FLI ML8300 Standard Grade Camera Preliminary Characterization Report: Photon/Dark Transfer Curve Analysis

Richard Crisp 13 September 2009 rdcrisp@earthlink.net www.narrowbandimaging.com

Scope of Work

- A standard grade FLI Proline ML8300 was characterized to quantify its performance in several areas
 - Specific parameters measured included:
 - Read noise
 - Full well capacity
 - PhotoResponse NonUniformity (Pn or PRNU)
 - DarkSignal NonUniformity (Dn or DSNU)
 - Camera Gain
 - Cooling
- Photon Transfer* methods were used for the analysis

*click:

http://www.narrowbandimaging.com/ptc_method_wsp2009_page.htm
**click:

http://www.narrowbandimaging.com/rbi_paper_crisp_page.htm

Summary of Measured Results

Parameter	Measured
	value
Read Noise	7.64 (e-)
@ 8 MHz	
Full Well Onset	26,176 (e-)
PRNU	0.37%
DSNU	90.1%
Camera Gain	0.4 e-/DN
Cooling	65C delta from ambient

Details of Characterization

Photon Transfer Procedure

- For non-RBI related tests, standard photon transfer measurements of a flat field were performed
 - Using ambient lighting, pairs of identical exposures were made beginning with minimum exposures and ending with full well: all light-on tests were made at -25C
 - All exposures were made using overscan to precisely determine the offset value (bias frames aren't good enough)
 - A specific selection box location containing 10,000 pixels was used for all measurements (light on, dark, RBI)
 - Dark measurements were made at +15C using pairs of identical darks starting with minimum exposures to a maximum of two hours at +15C. Minimum signal dark tests were made at -15C to reduce amount of charge collected to minimal values
 - Standard Photon transfer data reduction methods were used
 - The read noise value was measured in the overscan region and was used for the Y axis intercept for the PTC/DTC since near zero valued signal counts are difficult to obtain.

Typical Flat Field Frame used for PTC

Selection box is 100 x 100 pixels X-offset: 1750 **Y-offset: 1275** Location selected for nominal pixel behavior: no "junk" pixels, and measurement convenience while avoiding gradients Used 2 hour +15C dark to pick location for analysis

• Same identical pixels used for all tests

Read noise determination from

Overscan region: Std deviation = 19.109DN

Kadc: 0.4e-/DN

Read Noise: =19.109 * 0.4 = 7.64 e-

Images

ML8300 12 hours total exposure time: AP155EDF f/7 with 100mm field flattener FLI Research Grade [SII], Halpha and [OIII] filters

Image Link:

http://www.narrowbandimaging.com/ic1396_ap155_ml8300_s2hao3_page.htm

ML8300 5 hours total exposure time: AP155EDF f/7 with 100mm field flattener no filter

Image Link:

http://www.narrowbandimaging.com/m33_ap155edf_f7_ml8300_nofilter_page.htm

ML8300 45 minutes total exposure time: AP155EDF f/7 with 100mm field flattener FLI Research Grade Halpha Filter

Image Link:

http://www.narrowbandimaging.com/ic434_ap155edf_f7_ml8300_fli_ha_page.htm