Now, for something different...

Richard Crisp rdcrisp@earthlink.net www.narrowbandimaging.com

Originally prepared on February 2, 2007

Rotation of Neutron Star

The free electrons are trapped in a synchronous orbit and their velocity increases as the radius increases.

There's a critical radius where their velocity approaches the speed of light....

A charged particle experiencing acceleration will emit (or absorb) electromagnetic radiation (photons)

Ultra-relativistic (traveling near the speed of light) electrons traveling in strong magnetic fields generate synchrotron radiation

Synchrotron radiation has a continuous spectrum including the visible spectrum

Linearly Polarized emission

Force vector = $q^*\underline{\mathbf{v}} \times \underline{\mathbf{B}}$ vector

<u>Magnetic</u> Flux vector Electron moving in magnetic field travels in spiral and emits linearly polarized electromagnetic radiation
(ie synchrotron radiation)

Polarizing filters will select waves on the basis of polarization

A reflecting horizontal surface acts as a horizontal polarizer

A simple Polarigram: Assign each polarizer orientation to a single color channel

Polarizer outputs directly assigned to color channels (simple polarigram)

www.narrowbandimaging.com

What about this unpolarized light that is "common mode" in the outputs of all the polarizers?

---if the goal is to show only the polarization it will "contaminate" the image

= H + unpolarized common mode

= V + unpolarized common mode

The raw filtered results from the Vert and Horiz polarizers contains contaminating "common mode" light from unpolarized source

www.narrowbandimaging.com

r.crisp 01/22/2008

Stokes Parameters (aka polarization differencing) solve the common mode contamination problem.

Stokes Parameter Method:

For each color channel use the difference between data from a pair of polarizers. This removes the "common mode" light as explained before and the remaining signal is the:

...<u>difference in the polarization between two polarizers</u>...

<u>only light originating from a polarized source would remain</u>

<u>after this subtraction provided the images are linear and non-saturated</u>

Example: Vertical Polarizer Output – Horizontal Polarizer Output = V + common mode - (H + common mode)

= V – H = delta polarization from the Vertical and Horizontal Polarizers it is pure polarization with no common mode

vertical and horizontal polarizers

r.crisp 01/22/2008

Polarization Angle determination

- If (135 deg 45 deg) is zero and (vert horiz) positive, the wave is vertically polarized
- If (135 deg 45 deg) is zero, and (vert horiz) negative, the wave is horizontally polarized.
- If (vert horiz) is zero, and (135 deg 45 deg) positive, the wave is polarized at pa = 135 deg
- If (vert horiz) is zero, and (135 deg 45 deg) negative, the wave is polarized at pa = 45 deg
- Use trigonometry to solve the other cases....

Stokes polarigram reveals synchrotron polarization structure

[NII] = Red, Ha = Green, [OIII] = Blue

Emission line image highlights emissive filaments

Stokes polarigram highlights synchrotron

Emission line image highlights filaments

[SII] = Red, Ha = Green, [OIII] = Blue

Composite image: Stokes polarigram plus emission line image combined

Simple polarigram

Stokes polarigram

M78 Reflection Nebula

www.narrowbandimaging.com

Stokes polarigram

M82

www.narrowbandimaging.com

Comet 17P/Holmes

White Light Image 2007-1025-0500UTC

Polarization Difference Images = Stokes Polarigram

90 - 0 degrees

135 - 45 degrees

135 - 0 degrees

2007-1025-0500UTC

Polarization Difference Image

Polarization Difference Image by Crisp taken on UTC 10/25/2007 True Color Image
Found on Internet from
UTC 10/25/2007
author unknown

www.narrowbandimaging.com

r.crisp 01/22/2008

Rotational Gradient Image Processing Explained

Hyakutake image after RGRADIENT processing. Several jets are clearly revealed by this method

Co-register two identical images

Pick a "center" point

Rotate one image relative to the other

Some latent details can be revealed such as jets in the coma

Artifacts are introduced so must understand your errors!!

Rotational Gradient morphed to Polarization Difference Image

www.narrowbandimaging.com

M1

M78

Summary

• Linear Polarization found in Astronomical objects

- Dusty nebulae in star-forming regions, possibly with jets
- Circumstellar disks -

- Active galactic nuclei

Dusty comets

Hubble's Variable Nebula

I used the Edmund Industrial Optics 50mm round unmounted glass polarizer for this work. It costs about \$34.00

www.narrowbandimaging.com

Other equipment

- I use Finger Lakes Cameras (CM10, IMG1024S "Dream Machine, IMG6303E) for imaging, SBIG ST7E/ST7ME for guiding
- Astro-Physics AP1200GTO mounts
- Custom Scientific and Baader Planetarium narrowband emission line filters
- Maxim DL for camera/filter wheel and guider control

Thank you for your attention

Richard Crisp rdcrisp@earthlink.net www.narrowbandimaging.com