Read Noise impact on # exposures needed for SNR Goal

Richard Crisp rdcrisp@earthlink.net

April 11, 2017

Goals, Method

- Determine # exposures needed to stack to attain an arbitrary SNR for a given read noise and signal level
- Use noise equation to solve analytically
- Plot results for specific values

Equations

Noise =
$$\sqrt{Signal + ReadNoise^2}$$

(1)

(2)

Results for Specific Cases

- Case 1 Narrowband
 - Signal levels range from 10 e- to 50 e-
 - Read noise: 0 to 15 electrons
 - SNR goal for stacked result: 10
- Case 2 broadband
 - Signal levels range from 100 e- to 500 e-
 - Read noise: 0 to 15 electrons
 - SNR goal for stacked result: 50

Comment on Time Units

- Arbitrary units are chosen for time
- One arbitrary time unit is that amount of exposure time that results in 1 electron of signal
- Example: 10 e- take 10 arbitrary time units

Narrowband Typical

Broadband Typical

- 200e- signal, SNR goal = 50

20

Narrowband Typical

Assume 10 e- read noise Camera 1 and 40 e- signal levels Assume 6 e- read noise Camera 2 and 20 e- signal levels Compare total exposure time for SNR 10

camera	Signal level (e-)	# exp	Total Time (arb units)
Camera 1	40	9	360
Camera 2	20	14	280

Broadband Typical

Assume 10 e- read noise Camera 1 and 400 e- signal levels Assume 6 e- read noise Camera 2 and 200 e- signal levels Compare total exposure time for SNR 50

camera	Signal level (e-)	# exp	Total Time (arb units)
Camera 1	40	8	3200
Camera 2	20	15	3000

Low Signal Levels Like in Narrowband Imaging

Stacked Exposures, cooled, flat-fielded, despiked

0 e- read noise, 10 e- signal
1 e- read noise, 10 e- signal
2 e- read noise, 10 e- signal
5 e- read noise, 10 e- signal
7 e- read noise, 10 e- signal
10 e- read noise, 10 e- signal
12 e- read noise, 10 e- signal
15 e- read noise, 10 e- signal

of exposures

0 e- read noise, 20 e- signal
1 e- read noise, 20 e- signal
2 e- read noise, 20 e- signal
5 e- read noise, 20 e- signal
7 e- read noise, 20 e- signal
10 e- read noise, 20 e- signal
12 e- read noise, 20 e- signal
15 e- read noise, 20 e- signal

0 e- read noise, 30 e- signal
1 e- read noise, 30 e- signal
2 e- read noise, 30 e- signal
5 e- read noise, 30 e- signal
7 e- read noise, 30 e- signal
10 e- read noise, 30 e- signal
12 e- read noise, 30 e- signal
15 e- read noise, 30 e- signal

0 e- read noise, 40 e- signal
1 e- read noise, 40 e- signal
2 e- read noise, 40 e- signal
5 e- read noise, 40 e- signal
7 e- read noise, 40 e- signal
10 e- read noise, 40 e- signal
12 e- read noise, 40 e- signal
15 e- read noise, 40 e- signal

Stacked Exposures, cooled, flat-fielded, despiked

0 e- read noise, 50 e- signal
1 e- read noise, 50 e- signal
2 e- read noise, 50 e- signal
5 e- read noise, 50 e- signal
7 e- read noise, 50 e- signal
10 e- read noise, 50 e- signal
12 e- read noise, 50 e- signal
15 e- read noise, 50 e- signal

High Signal Levels Like in Broadband / Terrestrial Imaging

0 e- read noise, 100 e- signal
1 e- read noise, 100 e- signal
2 e- read noise, 100 e- signal
5 e- read noise, 100 e- signal
7 e- read noise, 100 e- signal
10 e- read noise, 100 e- signal
12 e- read noise, 100 e- signal
15 e- read noise, 100 e- signal

Stacked Exposures, cooled, flat-fielded, despiked

