

### High-performance CMOS Imager Technology for Solar Orbiter Space Mission

Clarence M. Korendyke, SoloHI Instrument Scientist ckorendyke@ssd5.nrl.navy.mil (202) 767-3144





- Wide-Field Imager of the Heliosphere From 5 to 45 deg From the Sun.
- Visible Light Observations.
- Single Telescope: No Mechanisms Other Than One-Shot Door.
- Next-Generation 4Kx4K APS Sensor.





Science Operations Concept Encounter Mission Mode

- Imaging Instruments Operate
   30 days/168-day Orbit.
- Nominal Partitioning:
   3 x 10-Day Windows.
- Focus on Special Sections of Each Orbit (e.g., Perihelion, Latitudinal Extremes).
- SoloHI Telemetry Allocation:
   52 Gbit/Orbit (20 kbit/s avg).
- 8 Orbits in Baseline Mission (Max Latitude <25°).</li>
- 8 Orbits in Extended Mission (Max Latitude <34°).</li>





- The SoloHI Instrument Concept Is a Direct Evolution From SECCHI/HI.
  - The SECCHI/HI on the STEREO Mission (Shown Below) Provides the "Proof-of-Principle" That Solar Wind Structures Can Be Well Observed Beyond the Traditional White Light Coronagraph Fields of View.



- Modifications for SoloHI.
  - Optical Design Is Tailored for SoloHI and uses the heat shield as the first baffle.
  - SoloHI will require a mass reduction of a factor of 3 from STEREO HI.
  - Next Generation Active Pixel Sensor replaces CCD. Active Pixel Sensor has comparable performance with a built-in shutter capability.
  - APS Drive Electronics is ~1.5kg lighter than the previous version.



#### SoloHI Instrument and Accommodation on Solar Orbiter Spacecraft





## SoloHI will continue the solar wind observations of STEREO HI from a different perspective.





# SoloHI will observe dynamic phenomena of the solar wind and other objects in the solar system.



#### Comet Enke movie



## Scene Brightness and Photometric Requirements





# Panoramic images are recorded on a mosaic of four 2Kx2K, 10 micron pixel devices.



Active Pixel Sensor is a critical mission enabling technology: •shutterless readout •radiation tolerant (100krads) •on-board CDS simplifies electronics. •straight forward power and interface requirements. •CCD like sensor performance.

•tailored low resource camera solution for SoloHI.

PRAN DRBITER HELIOSPHERIC MUSIC

#### **Electronics Block Diagram**





#### 2Kx2K Device Architecture and Readout Well Suited to SoloHI Requirements.



- Format: 1920x2048
- Pixel: 10 Micron With 5 Transistors
- Readout Frame and Interface: Meets Progressive Scan and Interface Requirements
- Left: Row Drivers (Sequence and Control Each Row)
- Bottom: Column Drivers With Corner and Block Video Outputs
- 8 Rows and Columns have Opaque Layer; Used for Dark Current





**APS Pixel Design** 

p-SUBSTRATE



| Requirement                          | Value                                                             | Compliance                                                                    |  |  |  |  |  |
|--------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|
| Overall Format                       | Nominal 4kx4k with 10 micron pixels.                              | 4x 1920x2048, 10 micron pixels                                                |  |  |  |  |  |
| Full Well                            | ≥ 19.2k electrons                                                 | >20 K electrons (linear)                                                      |  |  |  |  |  |
| Read Noise through image chain (BOL) | ≤ 14 electrons ≤ 7 electrons                                      |                                                                               |  |  |  |  |  |
| Dark Current                         | <2.21 e/pixel-second (BOL)<br>< 4.77 electrons/pixel-second (EOL) | <0.3 e/pix-sec (BOL) for long exposures <4 e/pix-sec (EOL) for long exposures |  |  |  |  |  |
| Average Quantum<br>Efficiency        | ≥ 25% (490 to 740nm)                                              | 32% average                                                                   |  |  |  |  |  |
| Cosmetics                            | > 95% pixels meet performance<br>requirements (EOL).              | Complies based on initial assessment after proton testing.                    |  |  |  |  |  |
| Readout Rate                         | ≥ 2M Pixels/sec                                                   | Demonstrated performance at 4M<br>Pixels/sec                                  |  |  |  |  |  |
| <b>Operation Mode</b>                | Progressive scan.                                                 | Complies by design                                                            |  |  |  |  |  |
| Redundancy                           | Independent operation of each device half                         | Complies by design                                                            |  |  |  |  |  |



• 63 A & B grade die from the three flight wafers probed that as considered candidates for flight devices.

| Wafer # | A-Grade | B-Grade     | Total |
|---------|---------|-------------|-------|
| 11      | 7       | 9           | 16    |
| 13      | 6       | 16          | 22    |
| 14      | 5       | 20          | 25    |
|         |         | Grand Total | 63    |

- Grade A devices have 0 bad rows and columns. Grade B devices have up to 2 bad rows/columns.
- Grade A devices will be used for flight and flight spare of SoloHI and WISPR.
- Wafer 15 is in the same family and may used if needed.











### Quantum Efficiency

SoloHi - 01-13-42 [Test Dewar] Quantum Efficiency





#### SoloHI device has excellent imaging properties.





# Measured MTF using a projected knife edge and sinusoidal patterns.

#### SoloHi 01-13-42-TD Horizontal MTF (Row to Row)



lp / mm (Nyquist @ 50.0 lp/mm)



Initial Proton Testing Results Dark Current Measurements







#### **Dark Current Expected Performance**





- The Varying Heliocentric Distance Transforms SoloHI From a Remote (at Aphelia) to a Local (at Perihelia) Imager
- SoloHI Is the First Imager to Provide Density Power Spectra at Rates Similar to *in-situ* Instruments (~1min) but at Multiple Locations at Once
- SoloHI Is the Only Instrument to Image Shocks and Connect the SEP Sources to the *in-situ* Measurements
- SoloHI Will Provide the First Measurements of the Dust 3D Distribution in the Inner Heliosphere
- SoloHI Only Possibility for Flyby Studies of Sungrazing Comets





### Back Up







- Instrument Provider
  - Naval Research Laboratory
- Co-Investigators
  - US Funded
    - Naval Research Laboratory
    - Jet Propulsion Laboratory
  - Contributed Funding
    - Centre Spatiale de Liege (Belgium)
    - Rutherford Appleton Laboratory (UK)
    - University of Gottingen (Germany)
    - Laboratoire d'Astronomie Marseille (France)
    - Institute d'Astrophysique Spatiale (France)



#### Spot Size vs Temperature





### Wave Turbulence Image Scene for Perihelion 10-Day Period



#### Wave Turbulence Program Scene at Perihelion



Restricted Radial Extent allows Photometric Accuracy Reqt to be satisfied with Higher Cadence Reqt (< 1 min)

Wave Turbulence Program Scene at Perihelion ± 5 days





### SoloHI Science Requirement Traceability Matrix (1 of 3)

| Science Objective                                                       | 2.1 How and where                                                                                                  | 2.1 How and where does the solar wind plasma and magnetic field originate in the corona?                           |                                                                       |                                          |                                        |                                                                                                 |                                                                          |                                                                           |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| Science Question #                                                      | 2.1.1                                                                                                              | 2.1.2                                                                                                              |                                                                       | 2.1.3                                    |                                        |                                                                                                 | 2.2.1                                                                    |                                                                           |  |  |  |
| Science Question                                                        | What are the source regions of the solar wind and heliospheric magnetic field?                                     | What mechanisms heat and accelerate the solar wind?                                                                | What are the sources of solar wind turbulence and how does it evolve? |                                          |                                        | How do CMEs evolve through the corona and inner heliosphere?                                    |                                                                          |                                                                           |  |  |  |
| Science Product ID                                                      | 2.1.1a                                                                                                             | 2.1.2a                                                                                                             |                                                                       | 2.1.3a                                   |                                        | 2.2.1a                                                                                          |                                                                          |                                                                           |  |  |  |
| Derived Science Products                                                | Global maps of H and He flow<br>velocities and He fractions (METIS,<br>SoloHI)                                     | Velocities and mass density of evolving structures (SoloHI, METIS)                                                 | Link evolution of C measured <i>in-situ</i> (S                        | ME properties in the SoloHI, METIS)      | e corona to those                      | Link evolution of CME properties in the corona to those measured <i>in-situ</i> (SoloHI, METIS) |                                                                          |                                                                           |  |  |  |
| Science Measurements                                                    | Images of coronal and heliospheric solar wind structures in visible                                                | Height-time plot and mass measurements of solar wind features                                                      | High cadence images structures in visible                             | ges of coronal and I<br>e                | neliospheric                           | Height-time plot                                                                                | and mass measu                                                           | rements of CMEs                                                           |  |  |  |
| Type and Number of Events<br>Captured Over Baseline Science<br>Mission  | <ul> <li>Quiescent wind for 3 days</li> <li>Active wind for 3 days</li> <li>Pseudo streamers for 3 days</li> </ul> | <ul> <li>Quiescent wind for 3 days</li> <li>Active wind for 3 days</li> <li>Pseudo streamers for 3 days</li> </ul> | Density power spe<br>20 Rsun at the 0.2                               | ctrum centered at 7<br>8 a.u. perihelion | Rsun, 15 Rsun,                         |                                                                                                 | ≥ 2 ICMEs                                                                |                                                                           |  |  |  |
| Type and Number of Events<br>Captured Over Threshold Science<br>Mission | <ul><li>Quiescent wind for 3 days</li><li>Active wind for 3 days</li></ul>                                         | <ul><li>Quiescent wind for 3 days</li><li>Active wind for 3 days</li></ul>                                         | Density power spea.u. perihelion                                      | ctrum centered at 7                      | Rsun at the 0.28                       | s ≥ 1 ICME                                                                                      |                                                                          |                                                                           |  |  |  |
| Required (R) or<br>Supporting (S) Measurement                           | S                                                                                                                  | R R                                                                                                                |                                                                       |                                          |                                        |                                                                                                 | R                                                                        |                                                                           |  |  |  |
| Observation Requirements                                                |                                                                                                                    |                                                                                                                    |                                                                       |                                          |                                        |                                                                                                 |                                                                          |                                                                           |  |  |  |
| Instrument Distance From Sun<br>(a.u.)                                  | 0.28 to 0.36                                                                                                       | 0.28 to 0.36                                                                                                       | 0.28 to 0.36                                                          |                                          |                                        | 0.28 to 0.36                                                                                    | 0.36 to 0.5                                                              | 0.5 to 0.7                                                                |  |  |  |
| Spacecraft Solar Latitude                                               | N/A                                                                                                                | N/A                                                                                                                |                                                                       | N/A                                      |                                        |                                                                                                 | N/A                                                                      |                                                                           |  |  |  |
| Image Type                                                              | Visible broadband                                                                                                  | Visible broadband                                                                                                  |                                                                       | Visible broadband                        |                                        | Visible broadband                                                                               |                                                                          |                                                                           |  |  |  |
| Scene Radial Coverage                                                   | 5.5 to 25°                                                                                                         | 5.5 to 40.5°                                                                                                       | 5.8 to 7.675°                                                         | 13.5 to 15.375°                          | 18.5 to 20.375°                        | 5.5 to 44.5°                                                                                    | 5.5 to 40.5°                                                             | 5.5 to 30.5°                                                              |  |  |  |
| Scene Transverse Coverage                                               | 26°                                                                                                                | 5°                                                                                                                 | 5°                                                                    | 5°                                       | 5°                                     |                                                                                                 | 26º                                                                      |                                                                           |  |  |  |
| Image Spatial Resolution                                                | ≤ 3.0 arcmin                                                                                                       | ≤ 2.7 arcmin                                                                                                       | ≤ 2.3 arcmin                                                          | ≤ 2.6 arcmin                             | ≤ 2.6 arcmin                           |                                                                                                 | ≤ 3.0 arcmin                                                             |                                                                           |  |  |  |
| Photometric Accuracy                                                    | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                                                                              | $\geq 20^{1}$ $\geq 5^{2}$                                                                                         | ≥ 16                                                                  | ≥ 16                                     | ≥ 16 <sup>a</sup><br>≥ 12 <sup>b</sup> | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                                                           | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                                    | ≥ 20 <sup>3</sup><br>≥ 5 <sup>4</sup>                                     |  |  |  |
| Cadence                                                                 | ≤ 30 min                                                                                                           | ≤ 15 min                                                                                                           | ≤ 10 sec ª<br>≤ 15 sec <sup>b</sup>                                   | ≤ 1 min                                  | ≤ 2 min                                | ≤ 30 min <sup>a, 5b</sup><br>≤ 60 min <sup>6b</sup>                                             | ≤ 40 min <sup>5</sup><br>≤ 80 min <sup>7</sup><br>≤ 120 min <sup>8</sup> | ≤ 40 min <sup>5</sup><br>≤ 80 min <sup>9</sup><br>≤ 140 min <sup>10</sup> |  |  |  |
| Science Observation Period Per<br>Day                                   | 24 hrs                                                                                                             | 24 hrs                                                                                                             | ≥ 4 hrs                                                               | ≥ 4 hrs                                  | ≥ 4hrs                                 |                                                                                                 | 24 hrs                                                                   |                                                                           |  |  |  |
| Science Observation Days Per<br>Orbit                                   | ≥ 14                                                                                                               | ≥ 6                                                                                                                | ≥ 4                                                                   | ≥ 4                                      | ≥ 4                                    | ≥ 14                                                                                            | ≥ 12                                                                     | ≥ 1                                                                       |  |  |  |
| Science Observation Days for<br>Baseline Science Mission                | ≥ 98                                                                                                               | ≥ 42                                                                                                               | 8 <sup>a</sup> , 24 <sup>b</sup>                                      | 8 ª, 24 <sup>b</sup>                     | 8 <sup>a</sup> , 24 <sup>b</sup>       | ≥ 98                                                                                            | ≥ 92                                                                     | ≥ 16                                                                      |  |  |  |
| Science Observation Days for<br>Threshold Science Mission               | ≥ 14                                                                                                               | ≥ 6                                                                                                                | 2 ª, 3 <sup>b</sup>                                                   | 2 ª, 3 b                                 | 2 ª, 3 <sup>b</sup>                    | ≥ 14                                                                                            | ≥ 14                                                                     | ≥1                                                                        |  |  |  |



### SoloHI Science Requirement Traceability Matrix (2 of 3)

| Science Objective                                                    |                                                              | 2.2 How do solar transients drive heliospheric variability?              |                                                                           |                                                    |                                                                            |                                                    |                                                                            |                                                                     |                                                                            |  |
|----------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Science Question #                                                   |                                                              | 2.2.2                                                                    |                                                                           |                                                    |                                                                            | 2.:                                                | 2.3                                                                        |                                                                     |                                                                            |  |
| Science Question                                                     | How do CMEs cor<br>helicity balance?                         | ntribute to solar mag                                                    | gnetic flux and                                                           | How and whe                                        | re do shocks f                                                             | orm in the coro                                    | na?                                                                        |                                                                     |                                                                            |  |
| Science Product ID                                                   |                                                              | 2.2.2a                                                                   |                                                                           | 2.2.3a 2                                           |                                                                            |                                                    | 2.3b                                                                       | 2.2                                                                 | 2.3c                                                                       |  |
| Derived Science Products                                             | Map source region<br>connectivity, polar<br>SoloHI, SWA, MAG | ns to <i>in-situ</i> properti<br>ity and helicity (EUI<br>G, EPD)        | es: magnetic<br>, METIS, SPICE,                                           | Timing of erup<br>coronal manif<br>(EUI, SoloHI)   | Timing of eruptions and<br>coronal manifestations<br>(EUI, SoloHI)         |                                                    |                                                                            | Position and speed of<br>shocks (SPICE, METIS,<br>SoloHI, RPW, EUI) |                                                                            |  |
| Science Measurements                                                 | Height-time plot ar                                          | nd mass measurem                                                         | ents of CMEs                                                              | High cadence                                       | height-time pl                                                             | ots and mass r                                     | neasurements                                                               | of CME fronts                                                       |                                                                            |  |
| Type and Number of Events Captured Over<br>Baseline Science Mission  |                                                              | ≥ 2 ICMEs                                                                |                                                                           | ≥ 2 ICME<br>accompan                               | s with an<br>ying shock                                                    | ≥ 2  0                                             | CMEs                                                                       | ≥ 2 ICME<br>accompar                                                | Es with an<br>lying shock                                                  |  |
| Type and Number of Events Captured Over<br>Threshold Science Mission |                                                              | ≥ 1 ICME                                                                 |                                                                           | ≥11                                                | CME                                                                        | ≥11                                                | CME                                                                        | ≥1                                                                  | CME                                                                        |  |
| Required (R) or<br>Supporting (S) Measurement                        |                                                              | S                                                                        |                                                                           | R                                                  |                                                                            | S                                                  |                                                                            | R                                                                   |                                                                            |  |
| Observation Requirements                                             |                                                              |                                                                          |                                                                           |                                                    |                                                                            |                                                    |                                                                            |                                                                     |                                                                            |  |
| Instrument Distance From Sun (a.u.)                                  | 0.28 to 0.36                                                 | 0.36 to 0.5                                                              | 0.5 to 0.7                                                                | 0.28 to 0.36                                       | 0.36 to 0.5                                                                | 0.28 to 0.36                                       | 0.36 to 0.5                                                                | 0.28 to 0.36                                                        | 0.36 to 0.5                                                                |  |
| Spacecraft Solar Latitude                                            |                                                              | N/A                                                                      |                                                                           |                                                    |                                                                            | N                                                  | /A                                                                         |                                                                     |                                                                            |  |
| Image Type                                                           |                                                              | Visible broadband                                                        |                                                                           | Visible broadband                                  |                                                                            |                                                    |                                                                            |                                                                     |                                                                            |  |
| Scene Radial Coverage                                                | 5.5 to 44.5°                                                 | 5.5 to 40.5°                                                             | 5.5 to 30.5°                                                              | 5.5 to 40.5°                                       | 5.5 to 30.5°                                                               | 5.5 to 40.5°                                       | 5.5 to 30.5°                                                               | 5.5 to 40.5°                                                        | 5.5 to 30.5°                                                               |  |
| Scene Transverse Coverage                                            |                                                              | 26°                                                                      |                                                                           | 5°                                                 |                                                                            |                                                    |                                                                            |                                                                     |                                                                            |  |
| Image Spatial Resolution                                             |                                                              | ≤ 3.0 arcmin                                                             |                                                                           |                                                    |                                                                            | ≤ 2.7                                              | arcmin                                                                     |                                                                     |                                                                            |  |
| Photometric Accuracy                                                 | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                        | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                                    | ≥ 20 <sup>3</sup><br>≥ 5 <sup>4</sup>                                     | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>              | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                                      | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>              | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                                      | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                               | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                                      |  |
| Cadence                                                              | ≤ 30 min <sup>a, 5b</sup><br>≤ 60 min <sup>6b</sup>          | ≤ 40 min <sup>5</sup><br>≤ 80 min <sup>7</sup><br>≤ 120 min <sup>8</sup> | ≤ 40 min <sup>5</sup><br>≤ 80 min <sup>9</sup><br>≤ 140 min <sup>10</sup> | ≤ 6 min <sup>a, 5b</sup><br>≤ 15 min <sup>6b</sup> | ≤ 6 min <sup>5</sup><br>≤ 15 min <sup>12c</sup><br>≤ 18 min <sup>11d</sup> | ≤ 6 min <sup>a, 5b</sup><br>≤ 15 min <sup>6b</sup> | ≤ 6 min <sup>5</sup><br>≤ 15 min <sup>12c</sup><br>≤ 18 min <sup>11d</sup> | ≤ 6 min <sup>a, 5b</sup><br>≤ 15 min <sup>6b</sup>                  | ≤ 6 min <sup>5</sup><br>≤ 15 min <sup>12c</sup><br>≤ 18 min <sup>11d</sup> |  |
| Science Observation Period Per Day                                   |                                                              | 24 hrs                                                                   |                                                                           | 24 hrs                                             | ≥ 16 hrs                                                                   | 24 hrs                                             | ≥ 16 hrs                                                                   | 24 hrs                                                              | ≥ 16 hrs                                                                   |  |
| Science Observation Days Per Orbit                                   | ≥ 14                                                         | ≥ 12                                                                     | ≥ 1                                                                       | ≥ 6                                                | ≥ 1                                                                        | ≥ 6                                                | ≥1                                                                         | ≥ 6                                                                 | ≥ 1                                                                        |  |
| Science Observation Days for Baseline Science Mission                | ≥ 98                                                         | ≥ 92                                                                     | ≥ 16                                                                      | ≥ 42                                               | ≥ 13                                                                       | ≥ 42                                               | ≥ 13                                                                       | ≥ 42                                                                | ≥ 13                                                                       |  |
| Science Observation Days for Threshold Science Mission               | ≥ 14                                                         | ≥ 14                                                                     | ≥ 1                                                                       | ≥ 6                                                | ≥ 1                                                                        | ≥ 6                                                | ≥ 1                                                                        | ≥ 6                                                                 | ≥ 1                                                                        |  |



### SoloHI Science Requirement Traceability Matrix (3 of 3)

| Science Objective                                                       |                                                         | 2.3 How d                                | o solar eruptions radiation that fills             | produce energe<br>the heliosphere                                          | etic particle<br>e?                                                   |                                                        |                                                                                                                    | 2.4 How does<br>be                                                                                  | s the solar dynam<br>etween the Sun ar                                                                            | o work and drive<br>nd the heliospher               | connections<br>e?                                                                                                                 |                  |
|-------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------|
| Science Question #                                                      |                                                         |                                          | 2.:                                                | 3.1                                                                        |                                                                       |                                                        | 2.4                                                                                                                | 4.1                                                                                                 | 2.4                                                                                                               | 4.2                                                 | 2.4                                                                                                                               | .3               |
| Science Question                                                        | How and where a                                         | re energetic parti                       | cles accelerated a                                 | t the Sun?                                                                 |                                                                       |                                                        | What is the three-dimensional structure and extent of streamers and CMEs?                                          |                                                                                                     | How are variations in the solar<br>wind linked to the Sun at all<br>latitudes?                                    |                                                     | What are the sources and<br>properties of dust in the inner<br>heliosphere, and do Sun-grazing<br>comets contribute to this dust? |                  |
| Science Product ID                                                      | 2.3                                                     | .1a                                      | 2.3                                                | .1b                                                                        | 2.3                                                                   | .1c                                                    | 2.4.G1a                                                                                                            |                                                                                                     | 2.4.                                                                                                              | G2a                                                 | 2.4.0                                                                                                                             | 33a              |
| Derived Science Products                                                | UV and X-ray ima<br>flares, and CMEs<br>STIX, METIS, So | aging of loops,<br>(EUI, SPICE,<br>loHI) | Location, timing, a CMEs and shocks                | and motion of<br>s (EUI, SoloHI)                                           | Images of longitud<br>CMEs in visible, L<br>rays (SoloHI, ME<br>STIX) | dinal extent of<br>JV, and hard X-<br>TIS, EUI, SPICE, | Measure the dynamic three-<br>dimensional structures of<br>streamers and CMEs at all<br>latitudes (SoloHI, METIS*) |                                                                                                     | Observe morphology and<br>dynamics of boundaries between<br>streamers and coronal holes<br>(SoloHI, EUI*, METIS*) |                                                     | Measure F-corona brightness,<br>morphology, and variability as a<br>function of ecliptic latitude (SoloHI)                        |                  |
| Science Measurements                                                    | High cadence hei                                        | ght-time plots and                       | d mass measurem                                    | ents of CME front                                                          | S                                                                     |                                                        | Images of coronal solar wind structu                                                                               | Images of coronal and heliopheric solar wind structures in visible solar wind structures in visible |                                                                                                                   |                                                     | Images of coronal                                                                                                                 | dust in visible  |
| Type and Number of Events<br>Captured Over Baseline Science<br>Mission  | ≥ 2 10                                                  | CMEs                                     | ≥ 2 IC                                             | ≥ 2 ICMEs                                                                  |                                                                       | CMEs                                                   | <ul> <li>Quiescent, act<br/>pseudo stream</li> <li>≥ 1 CME at ea<br/>extreme</li> </ul>                            | ive wind and<br>ners for 2 days<br>ch latitudinal                                                   | Quiescent, active<br>streamers for 2 da<br>latitudinal extreme                                                    | wind and pseudo<br>ays at each                      | ≥ 1 Sun-grazing c                                                                                                                 | omet with a tail |
| Type and Number of Events<br>Captured Over Threshold Science<br>Mission | ≥110                                                    | CME                                      | ≥ 1 10                                             | CME                                                                        | ≥ 1 ICME                                                              |                                                        | N/A                                                                                                                |                                                                                                     | N/A                                                                                                               |                                                     | N/A                                                                                                                               |                  |
| Required (R) or<br>Supporting (S) Measurement                           | s                                                       | 3                                        | F                                                  | R                                                                          | R                                                                     |                                                        | R                                                                                                                  |                                                                                                     | F                                                                                                                 | र                                                   | R                                                                                                                                 |                  |
| Observation Requirements                                                |                                                         |                                          |                                                    |                                                                            | -                                                                     |                                                        |                                                                                                                    |                                                                                                     |                                                                                                                   |                                                     |                                                                                                                                   |                  |
| Instrument Distance From Sun (a.u.)                                     | 0.28 to 0.36                                            | 0.36 to 0.5                              | 0.28 to 0.36                                       | 0.36 to 0.5                                                                | 0.28 to 0.36                                                          | 0.36 to 0.5                                            | 0.36 to 0.50                                                                                                       | 0.5 to 0.70                                                                                         | 0.36 to 0.50                                                                                                      | 0.5 to 0.70                                         | 0.36 to 0.50                                                                                                                      | 0.5 to 0.70      |
| Spacecraft Solar Latitude                                               |                                                         |                                          | N                                                  | /A                                                                         |                                                                       |                                                        | ≥ 15°                                                                                                              | ≤ -15°                                                                                              | ≥ 15°                                                                                                             | ≤ -15º                                              | ≥ 15°                                                                                                                             | ≤ -15°           |
| Image Type                                                              |                                                         |                                          | Visible b                                          | roadband                                                                   |                                                                       |                                                        | Visible broadband Visible broadband                                                                                |                                                                                                     |                                                                                                                   | roadband                                            | Visible broadband                                                                                                                 |                  |
| Scene Radial Coverage                                                   | 5.5 to 40.5°                                            | 5.5 to 30.5°                             | 5.5 to 40.5°                                       | 5.5 to 30.5°                                                               | 5.5 to 40.5°                                                          | 5.5 to 30.5°                                           | 5.5 to 40.5°                                                                                                       | 5.5 to 30.5°                                                                                        | 5.5 to 40.5°                                                                                                      | 5.5 to 30.5°                                        | 5.5 to 40.5°                                                                                                                      | 5.5 to 30.5°     |
| Scene Transverse Coverage                                               |                                                         |                                          | ŧ                                                  | 5°                                                                         |                                                                       |                                                        | 20                                                                                                                 | 6º                                                                                                  | 2                                                                                                                 | 6º                                                  | 26                                                                                                                                | <sup>30</sup>    |
| Image Spatial Resolution                                                |                                                         |                                          | ≤ 2.7                                              | arcmin                                                                     |                                                                       |                                                        | ≤ 3.0 a                                                                                                            | arcmin                                                                                              | ≤ 3.0 a                                                                                                           | arcmin                                              | ≤ 6.0 a                                                                                                                           | ırcmin           |
| Photometric Accuracy                                                    | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                   | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>    | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>              | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                                      | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                                 | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                  | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                                                                              | ≥ 20 <sup>3</sup><br>≥ 5 <sup>4</sup>                                                               | ≥ 20 <sup>1</sup><br>≥ 5 <sup>2</sup>                                                                             | ≥ 20 <sup>3</sup><br>≥ 5 <sup>4</sup>               | ≥2                                                                                                                                | 20               |
| Cadence                                                                 | ≤ 30                                                    | min                                      | ≤ 6 min <sup>a, 5b</sup><br>≤ 15 min <sup>6b</sup> | ≤ 6 min <sup>5</sup><br>≤ 15 min <sup>12c</sup><br>≤ 18 min <sup>11d</sup> | ≤ 30 min                                                              |                                                        | ≤ 40 min <sup>5</sup><br>≤ 80 min <sup>7</sup><br>≤ 120 min <sup>8</sup>                                           | ≤ 40 min <sup>5</sup><br>≤ 80 min <sup>9</sup><br>≤ 140 min <sup>10</sup>                           | ≤ 120 min                                                                                                         | ≤ 120 min <sup>5,9</sup><br>≤ 150 min <sup>10</sup> | ≤ 120                                                                                                                             | min              |
| Science Observation Period Per Day                                      | 24 hrs                                                  | ≥ 16 hrs                                 | 24 hrs                                             | ≥ 16 hrs                                                                   | 24 hrs                                                                | ≥ 16 hrs                                               | 24                                                                                                                 | hrs                                                                                                 | 24                                                                                                                | hrs                                                 | 24                                                                                                                                | nrs              |
| Science Observation Days Per Orbit                                      | ≥ 6                                                     | ≥ 1                                      | ≥ 6                                                | ≥ 1                                                                        | ≥ 6                                                                   | ≥ 1                                                    | ≥ 4                                                                                                                | ≥ 4                                                                                                 | ≥ 4                                                                                                               | ≥ 4                                                 | ≥ 4                                                                                                                               | ≥ 4              |
| Science Observation Days for<br>Baseline Science Mission                | ≥ 42                                                    | ≥ 13                                     | ≥ 42                                               | ≥ 13                                                                       | ≥ 42                                                                  | ≥ 13                                                   | ≥ 12                                                                                                               | ≥ 12                                                                                                | ≥ 12                                                                                                              | ≥ 12                                                | ≥ 12                                                                                                                              | ≥ 12             |
| Science Observation Days for<br>Threshold Science Mission               | ≥ 6                                                     | ≥ 1                                      | ≥6                                                 | ≥ 1                                                                        | ≥ 6                                                                   | ≥ 1                                                    | ≥ 2                                                                                                                | ≥2                                                                                                  | ≥ 2                                                                                                               | ≥2                                                  | ≥2                                                                                                                                | ≥2               |

\* Science data products from other Solar Orbiter instruments will address the science question better, but is not required



### **Deriving Science/Instrument Requirements**





### Science Measurement Requirements for Baseline/Threshold Investigation

| Science<br>Product ID | Measured Parameters                                                    | Cadence<br>(Temporal Resolution) | Spatial Range<br>(FoV) | Spatial<br>Resolution | Duration/Events/Features<br>/Orbital Location?                              | Baseline<br>Criteria Impact | Threshold<br>Criteria Impact |
|-----------------------|------------------------------------------------------------------------|----------------------------------|------------------------|-----------------------|-----------------------------------------------------------------------------|-----------------------------|------------------------------|
| 2.1.1a                | Images of coronal and heliospheric solar wind structures in visible    | 30 min                           | 35° x 35°              | 5 arc min             | Three different types, each for 3 days: quiescent, active, pseudo streamers | Green                       | Green                        |
| 2.1.2a                | Height-time plot and mass measurements of solar wind features          | 15 min                           | 35° x 5°               | 5 arc min             | Three different types, each for 3 days: quiescent, active, pseudo streamers | Green                       | Yellow                       |
| 2.1.3a                | High cadence images of coronal and heliospheric structures in visible  | at least 2 min                   | 3° x 5°                | 2.5 arc min           | Density power spectra at three<br>distances (7,15,20 Rs) for 4-<br>hrs/day  | Green                       | Red                          |
| r                     |                                                                        |                                  |                        |                       |                                                                             |                             |                              |
| 2.2.1a                | Height-time plot and mass<br>measurements of CMEs                      | 30 min                           | 40° x 40°              | 5 arc min             | ≥ 2 CMEs                                                                    | Green                       | Green                        |
| 2.2.2a                | Height-time plots and forward<br>modeling of CMEs                      | 30 min                           | 40° x 40°              | 5 arc min             | ≥ 2 CMEs                                                                    | Green                       | Green                        |
| 2.2.3a                | High cadence Height-time plots & mass measurements of CME fronts       | 6 min                            | 35° x 5°               | 2.5 arc min           | $\ge$ 2 CMEs with shocks                                                    | Green                       | Red                          |
| 2.2.3b                | High cadence Height-time plots &<br>mass measurements of CME fronts    | 5 min                            | 35° x 5°               | 2.5 arc min           | $\geq$ 2 CMEs                                                               | Green                       | Red                          |
| 2.2.3c                | High cadence Height-time plots & mass measurements of CME fronts       | 6 min                            | 35° x 5°               | 2.5 arc min           | $\ge$ 2 CMEs with shocks                                                    | Green                       | Red                          |
|                       |                                                                        |                                  |                        |                       |                                                                             |                             |                              |
| 2.3.1a                | High cadence Height-time plots & mass measurements of CME fronts       | 30 min                           | 40° x 5°               | 5 arc min             | ≥ 2 CMEs                                                                    | Green                       | Green                        |
| 2.3.1b                | High cadence Height-time plots & mass measurements of CME fronts       | 6 min                            | 40° x 5°               | 2.5 arc min           | $\geq$ 2 CMEs                                                               | Green                       | Red                          |
| 2.3.1c                | High cadence Height-time plots & mass measurements of CME fronts       | 30 min                           | 40° x 5°               | 5 arc min             | ≥ 2 CMEs                                                                    | Green                       | Green                        |
| -                     | Γ                                                                      | 1                                |                        |                       |                                                                             |                             |                              |
| 2.4. 1                | Images of coronal and heliospheric<br>solar wind structures in visible | 60 min                           | 40° x 40°              | 5 arc min             | days: quiescent, active, pseudo<br>streamers                                | Green                       | Green                        |



#### The Continuously Changing Scene and Resolution

- Lead to Different Science Targets for Each Orbit
- Require Flexible Observing Plans

|                                              |       | Scene Radial Coverage (deg) |       |           |       |           |       |           |       |           |       |       |
|----------------------------------------------|-------|-----------------------------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-------|
|                                              | 0.28  | 0.28 a.u.                   |       | 0.29 a.u. |       | 0.36 a.u. |       | 0.42 a.u. |       | 0.50 a.u. |       | a.u.  |
|                                              | Inner | Outer                       | Inner | Outer     | Inner | Outer     | Inner | Outer     | Inner | Outer     | Inner | Outer |
| Full Frame Image                             | 5.5   | 44.5                        | 5.5   | 44.5      | 5.5   | 44.5      | 5.5   | 44.5      | 5.5   | 44.5      | 5.5   | 30.5  |
| Inner FOV Subframe Image centered at 7 Rsun  | 5.8   | 7.675                       | 5.8   | 7.675     | 5.8   | 7.675     | 5.8   | 7.675     |       |           |       |       |
| Inner FOV Subframe Image centered at 15 Rsun | 13.5  | 15.375                      | 13.5  | 15.375    | 13.5  | 15.375    | 13.5  | 15.375    |       |           |       |       |
| Inner FOV Subframe Image centered at 20 Rsun | 18.5  | 20.375                      | 18.5  | 20.375    | 18.5  | 20.375    | 18.5  | 20.375    |       |           |       |       |
| Radial Swath Subframe Image                  | 5.5   | 40.5                        | 5.5   | 40.5      | 5.5   | 40.5      | 5.5   | 30.5      | 5.5   | 30.5      | 5.5   | 23.5  |

|                                              |       | Scene Radial Coverage on Thompson Surface (Rsun) |       |           |       |           |       |           |       |           |       |           |  |
|----------------------------------------------|-------|--------------------------------------------------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|--|
|                                              | 0.28  | a.u.                                             | 0.29  | 0.29 a.u. |       | 0.36 a.u. |       | 0.42 a.u. |       | 0.50 a.u. |       | 0.70 a.u. |  |
|                                              | Inner | Outer                                            | Inner | Outer     | Inner | Outer     | Inner | Outer     | Inner | Outer     | Inner | Outer     |  |
| Full Frame Image                             | 5.8   | 42.2                                             | 6.0   | 43.7      | 7.4   | 54.3      | 8.7   | 63.3      | 10.3  | 75.4      | 14.4  | 76.4      |  |
| Inner FOV Subframe Image centered at 7 Rsun  | 6.1   | 8.0                                              | 6.3   | 8.3       | 7.8   | 10.3      | 9.1   | 12.1      |       |           |       |           |  |
| Inner FOV Subframe Image centered at 15 Rsun | 14.1  | 16.0                                             | 14.6  | 16.5      | 18.1  | 20.5      | 21.1  | 24.0      |       |           |       |           |  |
| Inner FOV Subframe Image centered at 20 Rsun | 19.1  | 21.0                                             | 19.8  | 21.7      | 24.6  | 27.0      | 28.7  | 31.5      |       |           |       |           |  |
| Radial Swath Subframe Image                  | 5.8   | 39.1                                             | 6.0   | 40.5      | 7.4   | 50.3      | 8.7   | 45.9      | 10.3  | 54.6      | 14.4  | 60.0      |  |



# Baseline Observing Programs for <u>Perihelion</u> Period

|                               |             |             |                | Perihelion Regio | on               |             |            |
|-------------------------------|-------------|-------------|----------------|------------------|------------------|-------------|------------|
| Observing Program ID          | A1.1        | A1.2        | B1.1           | B1.2             | B1.3             | C1.1        | C1.2       |
| Program Description           | Sync        | optic       |                | Wave Turbulenc   | Shock Formation  |             |            |
| Image Type                    | Full F      | rame        |                | Inner FOV Subfra | me               | Radial Swat | h Subframe |
| Radial FOV                    | [5°, 25°]   | [25°, 45°]  | [5.80°, 7.68°] | [13.5°, 15.375°] | [18.5°, 20.375°] | [5°, 25°]   | [25°, 45°] |
| Transverse FOV                | 40          | )°          |                | 5°               |                  | 5           | 0          |
| Binning                       | 2 >         | : 2         | 1 x 1          | 2 x 2            | 2 x 2            | 2>          | 2          |
| Image Size w/Binning          | 1024 x 2048 | 1024 x 2048 | 192 x 512      | 96 x 256         | 96 x 256         | 1024 x 256  | 1024 x 256 |
| Maximum # of Images           | 4           | 32          | 8 12 16        |                  | 4                | 32          |            |
| in Summed Image               |             |             |                |                  |                  |             |            |
| Compression Type              | H-Compress  | Rice        | H-Compress     | Rice             | Rice             | H-Compress  | Rice       |
| Compressed<br>Image Size (MB) | 1.3         | 3.0         | 0.06           | 0.03             | 0.03             | 0.16        | 0.37       |
| Image Cadence                 | 30.0        | min         | 0.13 min       | 0.77 min         | 1.54 min         | 5.54        | min        |
| Images per Day                | 4           | 8           | 1872           | 312              | 156              | 26          | 60         |
| Observing Period<br>per Day   | 24          | hrs         |                | 4 hrs each       | 24 hrs           |             |            |
| Observing Days<br>per Orbit   | 2           | ŀ           |                | 2                | 2                |             |            |



### SoloHI Observing Program Telemetry Estimate

|      |                                      | Observing<br>Duration<br>in Single Orbit<br>(days) | Daily<br>Science Data<br>Estimate<br>(Gbits) | Daily<br>Data Volume<br>Estimate<br>(Gbits) | SoloHI<br>Data<br>Rate<br>(kbps) | Orbit<br>Science Data<br>Estimate<br>(Gbits) | Orbit<br>Data Volume<br>Estimate<br>(Gbits) |
|------|--------------------------------------|----------------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------|----------------------------------------------|---------------------------------------------|
|      | Perihelion Observing Programs        |                                                    |                                              |                                             |                                  |                                              |                                             |
|      | Solar Wind Turbulence Program        | 2                                                  | 2.78                                         | 2.95                                        | 34.2                             | 5.56                                         | 5.91                                        |
|      | Shock Formation Program              | 2                                                  | 2.90                                         | 3.08                                        | 35.6                             | 5.79                                         | 6.15                                        |
|      | Near Perihelion Observing Programs   |                                                    |                                              |                                             |                                  |                                              |                                             |
|      | Synoptic Observing Program           | 10                                                 | 1.12                                         | 1.21                                        | 14.0                             | 3.36                                         | 3.62                                        |
|      | Solar Wind Turbulence Program        | 3                                                  | 1.73                                         | 1.85                                        | 21.4                             | 5.20                                         | 5.55                                        |
|      | Shock Formation Program              | 4                                                  | 1.88                                         | 2.01                                        | 23.2                             | 7.52                                         | 8.03                                        |
|      | Far Perihelion Observing Programs    |                                                    |                                              |                                             |                                  |                                              |                                             |
|      | Synoptic Observing Program           | 12                                                 | 1.27                                         | 1.36                                        | 15.7                             | 13.93                                        | 14.97                                       |
|      | Shock Formation Program              | 1                                                  | 2.10                                         | 2.24                                        | 25.9                             | 2.10                                         | 2.24                                        |
|      | Northern Latitude Observing Programs |                                                    |                                              |                                             |                                  |                                              |                                             |
|      | Synoptic Observing Program           | 2                                                  | 1.17                                         | 1.24                                        | 14.3                             | 2.35                                         | 2.47                                        |
|      | Southern Latitude Observing Programs |                                                    |                                              |                                             |                                  |                                              |                                             |
|      | Synoptic Observing Program           | 2                                                  | 1.13                                         | 1.22                                        | 14.1                             | 1.13                                         | 1.22                                        |
|      | Shock Formation Program              | 1                                                  | 1.58                                         | 1.69                                        | 19.6                             | 1.58                                         | 1.69                                        |
|      |                                      | Observing Progra                                   | am Totals for:                               |                                             |                                  |                                              |                                             |
|      |                                      | Perihelion (4                                      | days)                                        | 3.02                                        | 34.90                            | 11.4                                         | 12.1                                        |
| Bas  | eline Observing Programs             | Near Perihelio                                     | on (10 days)                                 | 1.72                                        | 19.91                            | 16.1                                         | 17.2                                        |
| Sati | sfy the 20 kbps Telemetry            | Far Perihelior                                     | n (12 days)                                  | 1.43                                        | 16.59                            | 16.0                                         | 17.2                                        |
| Date | a Rate Requirement                   | Northern (2 d                                      | ays)                                         | 1.24                                        | 14.30                            | 2.3                                          | 2.5                                         |
| Jan  |                                      | Southern (2 d                                      | ays)                                         | 1.46                                        | 16.84                            | 2.7                                          | 2.9                                         |
|      |                                      | Orbit (30 days                                     | 5)                                           |                                             | 20.00                            | 48.5                                         | 51.9                                        |



#### **Optical Design**





#### Spot Diagram



|   | RMS    |
|---|--------|
| # | spot   |
|   | [mm]   |
| 1 | 0.0213 |
| 2 | 0.0204 |
| 3 | 0.0189 |
| 4 | 0.0196 |
| 5 | 0.0214 |
| 6 | 0.0225 |

RMS spot diameter in nominal conditions.



Spot Size vs Temperature



#### **Cross Section of SoloHI**



• The instrument is designed to reduce stray light to acceptable levels by a series of baffles – the sun shade/heat shield on the spacecraft is the first "baffle".



### Solar Orbiter Level-1 Science Objectives/Questions

- How and Where Do the Solar Wind Plasma and Magnetic Field Originate in the Corona?
  - What Are the Source Regions of the Solar Wind and Heliospheric Magnetic Field?
  - What Mechanisms Heat and Accelerate the Solar Wind?
  - What Are the Sources of Solar Wind Turbulence and How Does It Evolve?
- How Do Solar Transients Drive Heliospheric Variability?
  - How Do CMEs Evolve Through the Corona and Inner Heliosphere?
  - How Do CMEs Contribute to Solar Magnetic Flux and Helicity Balance?
  - How and Where Do Shocks Form in the Corona?
- How Do Solar Eruptions Produce Energetic Particle Radiation?
  - How and Where Are Energetic Particles Accelerated at the Sun?
- How Does the Solar Dynamo Work and Drive Connections Between the Sun and the Heliosphere?
  - How Are Variations in the Solar Wind Linked to the Sun at All Latitudes?
  - What Is the 3-Dimensional Structure and Extent of Streamers and CMEs?
- Additional SoloHI Goals/Questions
  - What Are the Sources and Properties of Dust in the Inner Heliosphere, and Do Sun-Grazing Comets Contribute to the Dust?



- SoloHI Will Image
  - The Solar Wind Structures and Fluctuations Directly.
  - The Solar Wind Environment Around Planets and Other Missions.
  - CME and Shock Propagation and Evolution and Their Connection to the Site of Production of SEPs.
- SoloHI Will Measure Electron Density Turbulence
  - Fast Cadence Readout Mode To Generate Power Spectral Density to Compare to In-Situ Observations of Density and Magnetic Field Spectral Density.
- SoloHI Provides The Links Between the
  - Solar Orbiter Remote Sensing and *in-situ* Instruments.
  - Solar Orbiter and Solar Probe+ Missions.