Ionic Migration on Printed-Circuit Boards

ESPEC CORP.

<u>CONTENS</u>

- 1. Introduction
- 2. About ionic migration
- *3. Test methods*
- 4. Insulation resistance test

(Copper and silver migration)

5. Solder alloy migration

Migration occurring on electronics components

(a) Copper migration on PCB (b) Copper migration on telephone connector

Failure on PCB and environmental stress

(a) Temperature and humidity in automobile

(b) Failure on PCBs

Factors of failure on PCB

About ionic migration

Classification of migration phenomenon

Reaction	Classification	Phenomenon	Failure part
Electrochemistry	Ionic migration	The metal ionizes, a metallic ion migretes	Between wiring
Electrochemistry	(electrochemical migration)	by the electric field.	for PCBs
	Electro migration	Interaction of metallic atom and electron	
Physical	Stress migration	A metallic atom migrates by the mechanical stress.	Aluminum wiring of semiconductor
	Themal migration	A metallic atom migrates by the thermal stress.	

(a) Ionic migration(electrochemical migration)

(b) Electro migration

(c) Stress migration

Reference (b) (c): Tsuneo Ajiki: "reliability of semiconductor device", Nikkagiren, 1988

The forms of Ionic Migration

(a) Dendrite

(b) CAF (Conductive Anodic Filament)

Reaction mechanism of Ionic Migration

Anodic reaction

$M M^{n+} + n e^{-} \cdots \cdots \cdots (1)$
$H_2O = 1/2O_2 + 2H^+ + 2e^- \cdots (2)$
$M + H_2 O M O + 2H^+ + 2e^- \cdots (3)$
Cathodic reaction
$M^{n+}+ne^{-}$ $M\cdots$
$0_2 + 2H_20 + 4e^- 40H^- \dots \dots$
$2H_2O+2e^ H_2+2OH^-\cdots\cdots(6)$
$2M^{+}+20H^{-}M_{2}O+H_{2}O\cdots(7)$
$M^{2+}+20 H^{-} M(0 H)_{2} \cdots \cdots (8)$
Reaction between electrodes
$2M^{+}+20H^{-}M_{2}0+H_{2}0\cdots (9)$
$M^{2+}+20 H^{-} M(0 H)_{2} \cdots \cdots \cdots (10)$

Acceleration factor of Ionic Migration

Factor	Acceleration condition		
Materials	(Fast) $Ag > Cu > Pb > Sn-Pb Solder > Sn > Au(Slow)$		
Temperature	High Temp		
Humidity High humidity			
Voltage	High voltage		
pH Acidity			
Ionic impurities	Halogen material (Chlorine, Bromine)		
Printed-cuircuit board material	Paper phenol > Glass epoxy > Polyimide > Ceramic		

Acceleration factor : materials (Pourbaix potential - pH diagrams)

-

Gibbs free energy change of metal oxide-film

(a) Relative humidity and corrosion(b) Thickness of water-film and corrosion speed

Reference (a): varon, w. : Trans, faraday soc., 23, 113(1927) (b):Tomashov, N D.: corros., 20, 7t(1964)

Acceleration factor : Voltage

(a) Quantitative characteristics of elution: voltage and copper ions

(b)The relationship between applied voltage and migration occurrence

Test methods

Test standards for Insulation evaluation

S tanda rd	Test nam e	Test conditions	Applied voltage	M easurem aen t V o Itage
₽C-TM-650- 26.13	Assessment of Susceptbility to Metallic Dendritic Growth Uncoated Printed Wiring	25 De-ionized water: 60m I	0~20V/DC (MAX.15mA)	
ANSI-J-STD- 004	Requirement for Soblering Fluxes	85 ,85%RH, 168H	50V / DC	100V / DC
J IS - Z - 3284	SoblerPaste	40 ,90-95%RH, 1000H	45 to 50V / DC	100V / DC
		85 ,85 to 90%RH , 1000H	45 to 50V / DC	100V / DC
PC-TM650- 263	Moisture and Insuration Resistance of printed boards	35 ,85 to 93%RH , 4days	100 V / DC	Decided in
		50 ,85 to 93%RH , 7days	100V / DC	w ith purchaser

Migration test pattern on PCB

(a) IPC test pattern

(b) IPC multi-purpose test board

Test methods : Simple migration test

(a) Water drop test

(b) Filter paper test

Test methods : Environmental migration test

Temperature / humidity chamber

HAST

(a) Evaluation by absorption

Dew condensation cyclic chamber

Temperature / humidity cyclic chamber

(b) Evaluation by dew

measurement method : Manual measurement

(1) specimen

(3) Insulation resistance meter (HP4329)

(2) High Temp/High Humi. test

(4) Insulation resistance meter (HP4339)

Insulation resistance test of PCBs

Results of Water Drop test (Cu and Ag, 2V/DC bias)

Surface insulation resistance (SIR) test for PCB

(a) Test condition

Test conditions	40 ,87% 60 ,87% 85 ,85% 1000Hr	
PCB material	Glass-cloth epoxy (FR-4) IPC-B comb pattern (Gap=0.3mm)	
Applied voltage	50V / DC	
Mesurement		
intervals	1 Hr	

(b) Specimen

Grass-epoxy PCB

Ionic migration evaluation system (ESPEC)

Wiring situation

Results of SIR test (Copper pattern PCB, 50V/DC bias)

Change in insulation resistance

Change in absorption characteristic

Results of SIR test (Copper pattern PCB, 50V/DC bias)

External appearance after testing (2000Hour)

No migration

No migration

No migration

Example : Results of SIR test (Paper phenolic PCB)

External appearance after testing

Example : Results of SIR test (Flux and Dew test)

Dew cyclic test

Evaluation of soldering flux

IPC-9201 (Surface Insulation Resistance Handbook)

$$t2 = t1 \times \exp[(\frac{\text{Ea}}{\text{R}})(\frac{1}{T1} - \frac{1}{T2})] \times \exp[b(\frac{1}{RH1} - \frac{1}{RH2})] \times (\frac{A2V2}{A1V1})$$

The Institute of Electrical Engineers of Japan (Report No. 772)

$$AF = \exp\left(\frac{Ea}{R}\left(\frac{1}{T1} - \frac{1}{T2}\right)\right) \times \left(\frac{RH2}{RH1}\right) r \times \left(\frac{V2}{V1}\right) n \times \left(\frac{D1}{D2}\right) m$$

Ea = Activation energy (Glass Epoxy PCB = 1eV)

R = Boltzmann's Constant (8.63 × 10^{-5} eV/k)

T1, RH1, V1, D1, t2 = Practice use Temp., Humi., Voltage, Electrode Distance, Time T2, RH2, V2, D2, t1= Accreted test Temp., Humi., Voltage, Electrode Distance, Time B, A1,A2, r, n, m = constant (r=3, n=2)

Life estimated formula of insulation failure

$$AF = \exp\left(\frac{Ea}{R}\left(\frac{1}{T1} - \frac{1}{T2}\right)\right) \times \left(\frac{RH2}{RH1}\right) r \times \left(\frac{V2}{V1}\right) n \times \left(\frac{D1}{D2}\right) m$$

$\cdot Ea = Activation energy$	\cdot AF1= exp[1.16 × 10 ⁴ × (1/318-1/358)]	
(Glass Epoxy $PCB = 1eV$)	$= \exp(4.1) = 59$	
\mathbf{R} = Boltzmann's Constant (8.63 × 10 ⁻⁵ eV/k)	$AF2 = (85/85)^3 = 1$	
• Practice Temp.(T1)=45 ,	$\cdot AF3 = (5/5)^2 = 1$	
Humi.(RH1)=85%	$AF=59 \times 1 \times 1 = \underline{59}$	
Voltage(V1) = 5V		
• Test Temp(T2)=85 , Humi.(RH2)=85%	Life Time = 2000 Hr × AF	
Voltage(V2)=5V, 2000Hr	= 118000Hr = <u>13.4 years</u>	
r, n = constant (r=3, n=2)		

Reference: The Institute of Electrical Engineers of Japan (Report No. 772)

Solder alloy migration

Factors of Solder alloy migration

(a) SEM image of solder surfaces

	materials	Reaction	<i>E</i> ° (V vs.SHE)
base	Zinc	$Zn^{2+}+2e^{-}=Zn$	-0.763
Î	Tin	$\operatorname{Sn}^{2+}+2e^{-}=\operatorname{Sn}$	-0.138
	Lead	$Pb^{2+}+2e^{-}=Pb$	-0.126
	Hydorogen	$2H^{+}+2e^{-}=H_{2}$	0.000
	Bismath	$Bi^{3+}+3e^{-}=Bi$	0.215
	Copper	$Cu^{2+}+2e^{-}=Cu$	0.337
Nobl e	Silber	Ag ⁺ +e ⁻ =Ag	0.779

(b) Standard potential of solder composition materials

Rest potential of each type solder (in 0.1M KO₃ aqueous solution)

Electrochemical characteristics (Dynamic characteristic)

Current - potential curves = dissolution characteristic (in $0.1M \text{ KO}_3$ aqueous solution)

Water Drop test - 1 (5V/DC bias)

Process of migration deposits Sn-Pb

Sn-Ag

20 sec

.

90 sec

Sn-Zn

332 sec

cathode(-)

Water Drop test - 2 (SEM analysis)

SEM image of migration deposits

Sn-Pb

anode(+)

cathode(-)

Sn-Ag

Sn-Zn

200 µ m

Compositional analysis of migration deposits

so be r	PointA	PointB	PointC
Sn Dh	Sn = 63%	Sn = 46%	Sn = 47%
311-F D	Pb = 37%	Pb = 54%	Pb = 53%
Sn-Ag	Sn = 100%	Sn = 100%	Sn = 100%
	Ag = 0%	Ag = 0%	Ag = 0%
Sn-Zn	Sn = 98%	Sn = 93%	Sn = 97%
	Zn = 2%	Zn = 7%	Zn = 3%

Surface insulation resistance test (50V/DC bias, 85 85%)

Time (Hour)

Migration occurring

Solder migration

No migration

Terminal of QFP (spacing:0.5mm)

No migration Chip capacitance (spacing:0.8mm)

<u>Sn-Ag-Cu solder</u>

No migration

