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Optics and the Airy Disk:

Focal ratio: Sets spot size for diffraction limited optics
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Nyquist Sampling of Airy Disk
Pixel Pitch: Sized to fit Airy Disk (spot):

Spot
(Airy disk)

Nyquist Sampling Criteria: e Exact Nyquist Sampling: 2 pixels to
Pixel size = 1.22 * )« F# cover Airy Diameter (spot)

For Seeing-Limited spot size, the FWHM of the seeing sets
the spot size and should still be covered by two pixels for
proper sampling.



An excerpt from Warren Smith’s
“Modern Optical Engineering”

Exploring the theory behind
lllumination intensity profile, Critical
focus zone and Resolution
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svetem. Figure 6.9a shows a schematic telecentric system. Note that
the dashed principal ray 1s parallel to the axs to the left of the lens. If
this system 1= used to project an image of a scale (or 2ome other ohject),
it can be 2een that a amall defocusing displacement of the scale does
not change the height on the scale at which the principal ray strikes,
although it will, of course, blur the image. Contrast this with Fig. 6.9b
where the stop 18 at the lens, and the defocusing causes a proportion-
al error in the ray height. The telecentric stop is also used where it 18
desired to project the mage of an object with depth (along the axs),
since it yvields less confusing images of the edges of such an ohject.

6.7 Apertures and Image lllumination—

f~Mumber and Cosine-Fourth
Fhiumbee Non-uniform
When a lens forms the image of an extended object, the amount of 1 1 1
energy collected from a small area of the object 1s directly proportion- Illu min at|0n across
al to the area of the clear aperturs, or entrance pupil, of the lens. At the f|e|d Of View Of
the image, the illumination (power per unit areal is inversely propor-
tional to the image area over which this object is spread. Now the aper- th e d ete Cto r is
ture area i= proportional to the sguare of the pupil diameter, and the
inage area is proportional to the sguare of the image distance, or focal N ormal
PRINCIPAL RAY TELECENTRIC

This is corrected by

= flat-fielding
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CORRECT
T 4 SCALE iN A DEFOCUSSED POSITION
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Fi 68 The telecentric stop is located at the focal point
of the projection system shown, so that the principal ray is
arallel to the axis at the u]:ued; When the object is slight-
¥ out of focus {dotted) there ia no error in the size of the
pm]r:':'led image as there is in the system with the stop at
the lens, shown in the lower sketch
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length. Thus, the sguare of the ratio of these two dimensions is 8 mea-
sure of the relative illumination produced in the image.

The ratio of the focal length to the clear aperture of a lens system is
called the relative aperture, fnumber, or *speed” of the system, and
{other factors being equal). the illumination in an image is inverse-
ly proportional to the sguare of this ratio. The relative aperture i=
given by

frnumber = efliclear aperture (6.1}

As an example, an 8-in focal length lens with a 1-in clear aperture
hag an fnumber of 8; this is customarily written 78 or fi8.

Another way of expressing this relationship is by the numertcal
aperture (usually abbreviated as N.A. or NAJ, which is the index of
refraction (of the medium in which the image lies) times the sine of the
half angle of the cone of llumination.

Numerical aperture = NA = n’ sin [T (6.2)

Numerical aperture and fnumber are obviously two methods of
defining the same characteristic of a system. Numerical aperture is
more convemently used for systems that work at finite congjugates
(such as microscope objectives), and the f-number iz appropriately
applied to systems for use with distant ohjects (such as camera lenses
and telescope ohjectives). For aplanatic systems (i.e., systems correct-
ed for coma and spherical aberration) with infinite object distances,
the two gquantities are related by:

fnumber = =1 {6.3)

2NA

The terms “fast” and “slow” are often applied to the foumber of an
optical system to describe its “speed.” A lens with a large aperture (and
thus a small fnumber) is 2aid to be “fast,” or to have a high “speed.” A
amaller aperture lens is deacribed as “slow.” This terminology derives
from photographic nsape, where a larger aperture allows a shorter (or
faster) expozure time to get the same gquantity of energy on the film
and may allow a rapidly moving object to be photopraphed without
blurring.

1t should be apparent that a system working at finite conjugates will
have an object-side numerical aperture as well as an image-zide
numerical aperture and that the ratio NA'NA" = (ohiect-side
NAVImage-side NA) must equal the absolute value of the magnifica-
tion. The term “working fnumber” is sometimes used to describe the
numerical aperture in f-oumber termes. If we use the terms “infinity
frnumber” for the ffnumher defined in Eqg. €.1, then the image-zide

e

Fnumber = F# =
Focal length/aperture

— In special cases:

—_

Numerical Aperture =
NA = 1/2F#
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working f-number is equal to the infinity foumber times (1 — m),
where m is the magnification.

Another term that iz occasionally encountered is the Tsfep. or
T-number. This i analogous to the fnumber, except that it takes into
account the transmission of the leng. Since an uncoated, many-
element lens made of exotic glass may transmit only a fraction of the
light that a low-reflection coated lens of simpler construction will trans-
mit, such a speed rating is of considerable value to the photographer.
The relationship between fnumber, T-number, and transmission is

[number

T-number = (6.4}

transmigsion

Cosine-to-the-fourth

For off-axis image points, even when there is no vignetting, the illu-
mination is usually lower than for the image point on the axis. Figure
6.10 iz a schematic drawing showing the relationship between exit
pupil and image plane for point A on axis and point H off axiz, The illa-
mination at an image point is proportional to the solid angle which the
exit pupil subtends from the point.

The =olid angle subtended by the pupil from point A is the area of
the exit pupil divided by the square of the distanee OA. From point H,
the solid angle ig the projected area of the pupil divided by the square
of the distance OH. Since OH is greater than OA by a factor equal to
1/eos 6, this increased distance reduces the illumination by a factor of
coz? fi. The exit pupil iz viewed obliquely from point H, and ite project-
ed area is reduced by a factor which is approximately cos . (Thiz is a
fair approcamation if OH 1z large compared to the size of the pupil; for
high-gpeed lenses used at large obliquities, it may be subject to signif-
icant errors. See Example A in Chap. 8 for an exact expression. )

Thus the illumination at point H is reduced by a factor of cos® 1. This
ig, however, true for illumination on a plane normal to the line OH

EX|T PumL

Figure 6.10 Helstionship between
exit pupil and image points,
used to demonstrate that the
illumination at H is cos* 6 times

]
| PLANE that at 4.

Light intensity roll-off
is proportional to the
Cos?*(off-axis angle)

This is corrected by
flat fielding
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{indicated by the dashed line in Fig. 6.10). We want the illumination
in the plane AH. An illumination of r lumens per square foot on the
dashed plane will be reduced on plane AH because the same mumber
of lumens is spread over a greater area in plane AH. The reduction fac-
tor 18 cos §, and combining all the factors we find that

Mumination at H = cos* 0 (illomination at A) (6.5

The importance of this effect on wide-angle lenses can be judged from
the fact that cos® 30° = 0.56, cost 45° = 0.25, and cos! 60° = 0.06. It
can be seen that the iflumination on the film in a wide-angle camera
will fall off guite rapidly

Mote that the preceding has been based on the assumption that the
pupil diameter iz constant (with respect to ) and that # is the angle
formed in image space (although many people apply it to the field
angle in object space). The “cosine fourth law”™ can be modified if the
construction of the leng iz such that the apparent size of the pupil
increases for off-axs points, or if a sufficiently large amount of barrel
distortion is introduced to hold @ to smaller values than one would
expect from the corresponding field angle in ohject space. Certain
extreme wide-angle camera lenses make use of these principles to
increase off-axis illumination. The cos® effect is in addition to any ilha-
mination reduction caused by vigmetting. It should be remembered
that the cosine-fourth effect is not a “law” but a collection of four cosine
factors which may or may not be present in a given situation.

6.8 Depth of Focus

The concept of depth of focus rests on the assumption that for a given
optical system, there exazts a blur (due to defocusing) of small enough
gize such that it will not adversely affect the performance of the sys-
tem. The depth of focus is the amount by which the image may be shift-
ed longitudinally with respect to some reference plane (eg., film,
reticlet and which will introduce no more than the acceptable blur. The
depth of field is the amount by which the olyject may be shifted before
the acceptable blur 1s produced. The size of the acceptable blur may be
specified as the linear diameter of the blur spot (as is common in
photographic applications) (Fig. 6.11) or as an angular blur, i.e., the
angular subtense of the blur spot from the lens. Thus, the linear and
angular blurs (B and @, respectively and the distance [ are related by
B B’

ﬁ: E = E ':B.'E_’

Depth of focus (aka
critical focus zone) is a
function of focal ratio
(numerical aperture)
and pixel size (as is
shown later)

Optimum pixel size set
by spot size (seeing
limited typically or
diffraction limited in
best case)
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for a gystem in air, where the primed symhaolzs refer to the image-zide
quantities.

Angular depth of focus

From Fig. 6.12, it can be seen that the depth of field & for a svstem with
a clear aperture A can be obtained from the relationship

=

2 )

BDx=& 4

Thiz expression can be solved for the depth of feld, giving
D' _ DB

A= D) A =8

Note that the depth of field foward the optical system 1= smaller than

that away from the system. When & is small in comparison with the
distanee [}, this reduces to

b= i6.7)

DF’s  Dj
e {
A A 5
For the image side, the relationship 1=
o® Fa
Br= —A'H = _Aﬂ = Fgiff#) = Bfi#) (6.9)

where the second. third, and fourth forms of the right-hand side apply
when the image i= at the focal prant of the system, and F 1s the system
focal length.

The depth of forus in terme of linear hlur-spot size B can be obtained
by substituting Eq. 6.6 into the above. Also, note that the depth of field
fi and the depth of focus & are related by the longitudinal magnifica-
tion of the system, so that

Depth of field is
asymmetric about
the focus point: less
moving toward the
aperture and more
moving away.

Seeing doesn’t
change the extremes
of the depth of focus:
but “softens” the
spot size at best
focus point



Key Concept
For Critical
Focus Zone
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APERTURE OF
OFTICAL SYSTEM 4

POONT OF FOCUS

q‘_:: f Lt Figure 812 Relationships used
— ] L == ™ to determinge the longitudinal

depth of field in terms of a toler-
able angular bior,

Busine

L
3
OUTSIRE DISTANCE & ——=1

F=m=m3 16.100

The hyperfocal distance of a gystem is the distance at which the sys-
tem must be focused s0 that the depth of field extends to infinity. If (D
+ &) equals infinity, then 0 is equal to A/, =zo that
I} ihyperfocal A L (6.11
{ == .
erfo 8 B i
J—
The photographic depth of focus

The photographic depth of focus is based on the concept that a defocus

— blur which is smaller than a silver grain in the film emulsion will not

be noticeable. This concept also can be applied to pixel size in, for
example, a charge-coupled device (CCIY). If the acceptahle blur diame-

ter 18 B, then the depth of focus (at the image) is simply
\

& = = Bif-number)

B
e s 16.12
INA g
The corresponding depth of field {at the object) is from D, to Dy,
where
A+ B
By ST (6.13)
s A — DR
f s MDA —8)
far (fA + DB) 16.14)
and the hyperfocal distance is simply
T
Dh]'F = ? 16.15."

where ) = the nominal distance at which the svetem iz focused (note
that, by our sign convention, I is normally negative)

Critical Sampling
(per Nyquist)

=
AS

‘
J
\

\

Optical Blur
(spot size)



Stope and Aperturas 15T

A = the diameter of the entrance pupil of the lens
f = the focal length of the lens

Note that there are several false assumptions here. We assume that
the image iz a perfect point, with no diffraction effects. We also assume
that the lens has no aberrations and that the blwrring on both sides of
the focus i= the same. None of these assumptiona is correct, but the
equations above do give a usable model for the depth of focus. In prac-
tice, the acceptable blur diameter B is usually determined empirically
by examining a series of defocused images to decide the level of accept-
ahility; the egnations above are then fitted to the results.

6.9 Diffraction Effects of Apertures

Even if we assume that an infinitely small point source of light i= pos-
gihle, no lens system can form & true point image, even though the lens
be perfectly made and absolutely free of aberrations. Thiz results from
the fact that light does not really travel in straight-line rayvs, but
behaves as & wave motion, bending around corners and obstructions to
a small but finite degree.

According to Huyegen's principle of light-wave propagation. each
point on a wave front may be considered as a source of spherical
wavelets; these wavelets reinforce or interfere with each other to form
the new wave front. When the original wave front iz infinite in extent,
the new wave front is simply the envelope of the wavelets in the direc-
tion of propagation. At the other extreme, when the wave front 18 lim-
ited by an aperture to a very small size (zay, to the order of a half
wavelengthl, the new wave front becomes spherical about the aper-
ture. Figure 6.13 shows a plane wavefront incident on a slit AC, which
iz in front of a perfect len=, The lens iz focused on a screen, EF. We
wigh to determine the nature of the illumination on the screen. Since
the lens of Fig. 6.13 1s assumed perféct. the optical path lengths AE,
BE, and CE are all equal and the waves will arrive in phase at E, rein-
forcing each other to produce a bright area. For Huygen's waveletz

’_JSLIT

H
x —_—
il = - 'q

w2
e L
(i r:/"'
SCREEN Figura 6.13

LENE

— =y
L]
L
ot

Defocusing is a
function of position
of image plane,
seeing doesn’t
change the
defocusing
characteristics but
can overwhelm the
diffraction limited
spot size variation as
a function of image
plane location
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starting from the plans wave front in a direction indicated by angle o,
the pathz are different; path AF differs from path CF by the distance
CD. If CD iz an integral number of wavelengths, the wavelets from A
and C' will reinforce at point F If O 18 an odd number of half wave-
lengthe, a cancellation will occur. The illumination at / will be the
summation of the contributions from each incremental segment of the
alit, taking the phase relationships into account. It can be readily
demonstrated that when CD is an integral number of wavelengths, the
llumination at F iz zero, as follows: if CI) is one wavelength, then BG
iz ome-half wavelength and the wavelets from A and B cancel.
Similarly, the wavelets from the points just below A and B cancel and
a0 on down the width of the slit. If CIY ia ¥ wavelengths, we divide the
glit into 2V parts (instead of two parts) and apply the same reazoning.
Thus, there ig a dark zone at F when
+=NA

gin g = ——
1w
where N — any integer
k& = the wavelength of the light
w = the width of the slit

Thus, the illumination in the plane EF is a seriea of light and dark
bands, The central bright band i2 the most intense, and the bands on
gither side are successively less intense, Ome can realize that the
intensity should diminish by considering the situation when CD is
1.6&, 2.5, etc. When CD is 1.5k, the wavelets from two-thirds of the
slit can be shown (as in the preceding paragraph | to interfere and can-
ce] out, leaving the wavelets from one-third of the aperture; when CD
iz 2.5, only one-ffth of the slit is uncanceled. Since the “uncanceled”
wavelets are neither exactly in nor exactly out of phasze, the illumina-
tion at the corresponding points on the screen will be less than one-
third or one-fifth of that in the central band.

For a more rigorous mathematical development of the subject, the
reader 18 referred to the references following this chapter. The mathe-
matical approach iz one of integration over the aperture, combined
with a suitable technique for the addition of the wavelets which are
neither exactly in nor exactly out of phase. This approach can be
applied to rectanpular and circular apertures as well as to slits.

For a rectangular aperture, the illumination on the screen is
given by
sin“m, sin‘my

mji m.2

P (6.16)

z

m, = @ i=12 (6.17)
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In these expreszions A is the wavelength, ur the width of the exit aper-
ture, « the angle subtended by the point on the screen, m; and ma cor-
respond to the two principal dimengions, wy and ws, of the rectangular
aperture and [ is the illumination at the center of the pattern.

When the aperture iz circular, the illumination is given by

T ;myE 1 2 1 md® 1, miB o
f”-n["ﬁ[?]ﬁ[é“@]-z(ﬁ)-*g(ﬁ_}----]

:fn

2J0m) |2
m l (6.18)
where m ig given by Eq. 6.17 with the cbvious substitution of the diam-
eter of the circular exit aperture for the width, w, and JJ,( ) is the first-
order Bessel function. The illumination pattern consists of a bright
central spot of light surrounded by concentric nings of rapidly decreas-
ing intensity. The bright central spot of thiz pattern iz called the
Airy disk.

We can convert from angle o to Z, the radial distance from the cen-
ter of the pattern, by reference to Fig. 6.14. If the optical svstem i rea-
sonably aberration-free, then

- B
" en T
and to a close approximation, when a 12 small
Z= FL: - . (6.19)

n 2n’ sin L7

The table of Fig, 6.15 ligta the characteristics of the diffraction pat-
terns for circular and slit apertures. The table is derived from Eqs.
6.16 and 6.18, but the data is given in terms of £ and sin [” rather
than « and w. Note that r* gin U7 ig the numerical aperture NA of the
optical system.

Notice that 84 percent of the energy in the pattern iz contained in
the central apot, and that the illumination in the central spot 12 almost
60 times that in the first bright ring. Ordinarily the central spot and

v/
DIFFRACTION Figure 6.14
PATTERN

I

By convention the
— diffraction limited
spot size is called
the Airy disk. They
are mathematically
related to the first

order Bessel
Function.
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Circular Aparture Slit Aperbure
Paak Peak
Mumi-  Enengy llurni=
Ring (or band) z nation In Ring £ nalior
Central maximum a 10 B3.9% a 1.0
15t dark ring D& W sEnllr 00 05 Wa©sin U o0
15l baight ring 0.E2 Wn'sinl” 0017 1% 0,72 Win " ain L' 0.047
2d dark ring 112 M n' gin U 0.0 1.0 afn® &in LY 0.0
2d brighl ring 133 w0 En S 00041 28% 1223 afn " sin LY 0oz
3rd dark ring 1.62 uMn'snl" 00 1.8 ain"sin L 0.0
3rd bright ring 185 0n'snl" 0006 1.5% 1.74 win" ain LM 0.0083
4th dark ring 212 un'sin " 00 20 Wi el 0.0
4th bright ring 236 Mn'en " 000078 1.0% 2.24 Win' ain L' 0.0050
St dark ring 282 ain’ sin L' 25 Mn'sinlr 0.0

Figure 615 Tabulation of the size of and distribotion of energy in the diffraction pattern
at the foeos of & perfict lans.

the first two bright rings dominate the appearance of the pattern, the
other ringz being too faint to notice. The illumination in a diffraction
pattern i= plotted in Fig. 6.16, One ghould bear in mind the fact that
these energy distributions apply to perfect, aberration-free =ystems
with circular or slit aperturesz which are uniformly transmitting and
which are illuminated by wave fronts of uniform amplitude. The pres-
ence of aberrations will, of course, modify the distribution as will any
nonuniformity of transmission or wave-front amplitude (see, for exam-
ple, Sec. 6.11).

6.10 Resolution of Optical Systems

The diffraction pattern resulting from the fimite aperture of an optical
syatem establishes a limit to the performance which we can expect
from even the best optical device. Consider an optical system which
images two equally bright point sources of light. Each point is imaged
as an Airy disk with the encircling rings, and if the points are close,
the diffraction patterne will overlap. When the separation is such that
it 1= just possible to determine that there are two points and not one,
the points are said to be resolved. Figure 6.17 indicates the summation
of the two diffraction patterms for various amounts of separation.
When the image points are closer than 050 NA (NA 15 the numerical
aperture of the system and equals n” sin [7), the central maxima of
both patterns blend into one and the combined patterns may appear to
be due to a single source. At a separation of 0.58NA the duplicity of
the image points 1= detectable, although there 15 no minimum between
the maxima from the two patterns. This is Sparrow’s criterion for res-
olution. When the imape separation reaches 0. 610WNA, the maximum

The numerical
aperture is useful
for calculating the
best case angular
resolution
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Figure 6168 The distribution of illuminstion in the Airy
disk. The appesrance of the Airy disk i= shown in the
upper right.

of one pattern coincides with the first dark ring of the other and there
18 a clear indication of two separate maxima in the combined pattern.
This is Lord Rayleigh’s criterion for resolution and is the most widely
used value for the imiting resolution of an optical system.*

From the tabulation of Fig. 6.15, we find that the distance from the
center of the Aary disk to the first dark ring 1= given by

L S (6.20)

n' sin [ NA
This is the separation of two image points corresponding to the
Rayleigh criterion for resolution. This expression is widely used in
determining the imiting resolution for microscopes and the like, For
resolution at the image, the NA of the image cone iz used; for reaolu-
tion at the object, the WA of the object cone is used.

*The diffraction pattern of two peint images will slways differ somewhst from the dif-
fraction pattern of a single point. It is thus possible to detect the presence of two points
{as opposed to one ) even in cases where the two points cannot be visually resolved or sep-
arated. This is the source of the occasional claims that & system “exceads the theorati-
cal limit of resolution.” In Chap. 11 it is shown that there is a true limit on the resclution
of & sinusoidel line target; the limit on the spatia] frequency is 0y = 2NAK = TT#.



Lambda and
omega must be
in same units:
radians are
“dimensionless”

Omega here is
in units of
inches
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Figure 617 The dashed lines represent the diffrection
patterns of two point images st various separations. The
solid line indicates the combined diffraction psttern. Case
{b) is the Sparrvw criterion for resclution. Case (¢} is the
Ravleigh criterion.

|a) NOT RESOLVED

To evaluate the performance limits of telescopes and other systems
working at long object distances, an expression for the angular sepa-
ration of the object points is more uzeful. Rearranging Eq. 6.19 and
substituting the hmiting value of £ from Eq, 6.20, we get, in radian

MERSUTre,
[ = L2 radians ] 16.21)

L

For ordinary visual instruments, A may be taken as 0.55 pm, and
using 4.85 - 10-¢ radians for 1 second of are, we find that

5.5

’M u = —— seconds of arc 16.22)
w

when w 18 the aperture diameter expressed in inches. By a series of
careful obeervations, the astronomer Dawes found that two stars of
equal brightness eould be visually resolved when their separation was
4. 6w seconds. Notice that if the Sparrow criterion is uzed instead of
the Ravleigh criterion in Eqg. 6.22, the limiting resolution angle is
4 5/w seconds, which 12 1 close agreement with Diawes' indings.

It i= worth emphasizing here that the angular resolution limit iz a
direct function of wavelength and an inverse function of the aperture
of the syastem. Thus, the limiting resolution is improved by reducing

e

Limiting
resolution is a
function of
aperture
diameter for
optics used at
infinity (such as
a telescope)
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the wavelength or by increasing the aperture. Note that focal length or
working distance do not directly affect the angular resolution. The [in-
eqar resolution is governed by the wavelength and the numerical aper-
ture (INA or f-number), and not by the aperture diameter.

In an instrument such as a spectroscope, where it is desired to sep-
arate one wavelength from another, the measure of resclution is the
smallest wavelength difference, di, which can be resolved. This 15 usu-
ally expressed as Wdh: thus, a resolution of 10,000 would indicate that
the smallest detectable difference in wavelength was 1/10,000 of the
wavelength nupon which the instrument was get.

For a prism spectroscope, the prism is frequently the limiting aper-
ture, and it can be shown that when the prism is used at minimum
deviation, the resolution 1s given by

A _pdn

dA dA
where B 1= the length of the basze of the prism and dn /dk i= the dis-
persion of the prism material.

A diffraction grating consista of a series of precizely ruled lines on a
clear (or reflecting) base. Light can pass directly through a grating, but
it 18 also diffracted. A= with the slit aperture discussed above, at certain
angles the diffracted wavelets reinforee, and maxima are produced when

(6.23)

drEs % B (6.24)

where k i the wavelength, [ is the angle of incidence, S is the spacing
of the grating lines, m i8 an integer, called the order of the maxima,
and the positive sign 15 used for a transmission grating, the negative
for a reflecting. {Note that a sinusoidal grating has only a first order.)
Since o depends on the wavelength A, such a device can be used to sep-
arate Lhe diffracted hight into its component wavelengths. When used
as indicated in Fig. 6.18, the resolution of a grating is given by

L Jm—— (6.25)
a A

where m is the order and N i3 the total number of linez in the grating

iassuming the size of the grating to be the limiting aperture of the

system).



